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Topological mechanics of knots and tangles
Vishal P. Patil1, Joseph D. Sandt2, Mathias Kolle2, Jörn Dunkel1*

Knots play a fundamental role in the dynamics of biological and physical systems, from DNA to turbulent
plasmas, as well as in climbing, weaving, sailing, and surgery. Despite having been studied for centuries, the
subtle interplay between topology and mechanics in elastic knots remains poorly understood. Here, we
combined optomechanical experiments with theory and simulations to analyze knotted fibers that change their
color under mechanical deformations. Exploiting an analogy with long-range ferromagnetic spin systems, we
identified simple topological counting rules to predict the relative mechanical stability of knots and tangles, in
agreement with simulations and experiments for commonly used climbing and sailing bends. Our results
highlight the importance of twist and writhe in unknotting processes, providing guidance for the control of
systems with complex entanglements.

K
nots are among the oldest, most endur-
ing human technologies, as valuable to
ancient builders (1) and mariners (2) as
to modern engineers and surgeons (3).
Thought to predate thewheel (1), knotted

structures owe their extraordinary longevity
and widespread usage to an inherent mechan-
ical robustness that arises from the subtle
interplay of topology, elasticity, and friction.
Over the course of many centuries, sailors,
weavers, climbers, and surgeons have acquired
a wealth of knowledge about the benefits and
drawbacks of various types of knots (1, 2).
Experience has taught us that certain knots
are more stable than others, but we are still
largely unable to predict the mechanical be-
havior of knots and tangles from basic topo-
logical observables (4), such as the number
and relative ordering of crossings. Although
recent experimental and theoretical research
has revealed important insights into the com-
petition between force transmission and fric-
tion in special classes of knots (5, 6), hitches
(7), and fabrics (8), there currently exists no
comprehensive mathematical theory (9) link-
ing the topological and mechanical proper-
ties of knotted elastic structures.
Physical knots and their topology first

assumed a central role in science with the
introduction of Kelvin’s vortex-atom model
in the 1860s (10). Since then, the fundamen-
tal importance of entangled structures has
become firmly established in a diverse range
of disciplines and contexts (9). In physics, for
example, interactions between knotted defect
lines are essential to understanding and con-
trolling dynamics and mixing in classical and
complex fluids (11–14), including liquid crystals
(15), plasmas (16), and quantum fluids (17).
Whereas the energetic costs associated with
topological transformations are typically low

in liquids and gases (17), they tend to become
prohibitively large in entangled solids (5, 6).
This fact has profound consequences for the
stability and function of natural and engi-
neered structures, from themicroscopic knots
inDNA (18, 19), proteins (20–22), and polymers
(23) to knitted clothes (8) and macroscopic
meshworks (24). Achieving a unified under-
standing of these various systems requires
taking into account not only their topological
but also their elastic properties. Because key
concepts from topology and elasticity theory
remain applicable over a wide range of scales,
deciphering the topological principles (5, 6, 9)
that determine the mechanical stability of
knots promises insights into a broad spectrum
of physically entangled structures. Therefore,
ourmain goal is to identify generic topological
counting rules that enable us to estimatewhich
members of a given family of elastic knots are
the most robust against untying. To this end,
we combined elements frommathematical and
physical knot theory (9, 25) with optomechan-
ical experiments and quantitative continuum
modeling (Fig. 1).
We were interested in tying two lines to-

gether so that they form a stable longer rope, a
task known as “tying a bend” among sailors (2).
Mathematically, this configuration describes
an oriented 2-tangle, defined as the union of
two oriented open curves embedded in space
(4). Although an elegantmathematical formal-
ism exists to describe certain simple families
of 2-tangles (26), little is known theoretically
about even the most basic bend knots used in
practice. We constructed a topological phase
diagram that explains the relative stability
of a selection of bends that are commonly
used in the sailing and climbing commun-
ities. To validate the underlying topologi-
cal model, we compared its predictions with
simulations of an optomechanically verified
continuum theory and with quantitative mea-
surements using laboratory “prisoner’s es-
cape” experiments.
Our optomechanical experiments use re-

cently developed color-changing photonic

fibers (27) that allow for the imaging of strain
in knots (Fig. 1, A and B). These fibers derive
structural color from a multilayer cladding
composed of alternating layers of transpar-
ent elastomers with distinct refractive indices
wrapped around an elastic core. Their color-
ation varies with the thickness of layers in the
periodic cladding, which changes upon elon-
gation or bending. As is typical of macroscopic
materials at room temperature, the persistence
lengths of the fibers used in our experiments
are several orders of magnitude larger than
the diameters of the tightened knots (28), with
empirical knowledge (2) indicating that es-
sential knot properties are only weakly depen-
dent on the elastic modulus. Theoretically,
we describe knotted fibers using a damped
Kirchhoff model (5, 28, 29) validated through
comparison with photographs depicting the
strain-induced color changes in mechanores-
ponsive photonic fibers (Fig. 1, A to C). Sim-
ulating the tightening process of a 1-tangle,
corresponding to a single knotted fiber pulled
at both ends (Fig. 1, A and B, and movie S1),
reveals the relative strengths and localization
of the bending and stretching strains (Fig. 1,
D and E), which are not individually dis-
cernible in our experiments. Furthermore, the
Kirchhoff model highlights why topological
considerations (4) alone do not suffice to ex-
plain the mechanical behaviors (2) of real-
world knots: Loosening or tightening a knot
transforms any of its planar projections ac-
cording to a sequence of three elementary
topology-preserving Reidemeister moves, R1,
R2, and R3 (Fig. 1F). Despite being topolog-
ically equivalent, themoveR1 is energetically
distinct as it involves substantial changes in
strain, whereas moves R2 and R3 are energet-
ically favored soft modes (Fig. 1F), implying
that physical knots preferentially deform by
R2 and R3. Thus, to link the physical proper-
ties of tangled fibers to their topology, one
must merge concepts from classical mathe-
matical knot theory (4) with elasticity theory
(5, 6, 9, 30).
Continuum simulations provide guidance

for how one can complement bare topolog-
ical knot diagrams (4) with coarse-grained
mechanical information that is essential for
explaining why certain knots are more stable
than others (Fig. 2). In contrast to a 1-tangle,
which is tightened by pulling diametrically at
its two ends (Fig. 2A), each strand of a bend
knot has one pulled and one free end (Fig. 2B).
Therefore, the local fiber velocity directions
in the center-of-mass frame of the bend knot
define natural fiber orientations on theunderly-
ing 2-tangle (Fig. 2B), thus establishing map-
ping between bends and oriented 2-tangles. At
each contact crossing, the fibers mutually gen-
erate a frictional self-torque with well-defined
handedness, depending on the relative velocity
and ordering of the two fiber strands (Fig. 2, B
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Fig. 1. Experiments and simulations reveal mechanical properties of knots.
(A and B) Color-changing mechanoresponsive fibers confirm the stress patterns
predicted by continuum simulations for the trefoil knot (A) and the figure-of-eight
knot (B) during the tightening process (movie S1). Fiber diameter is 0.4 mm.
(C) Dependence of fiber color on strain visualized as a trajectory in the CIE 1931 XYZ
color space, where mean positions (solid circles) lie within standard deviation
ellipses (28). This strain color coding is used in panels (A), (B), and (F).

(D and E) Simulations revealing the relative strength of bending and stretching strains
along knots. (D) and (E) show the evolution of these two complementary strain
contributions during tightening of the trefoil knot in (A) and the figure-of-eight knot in
(B). Pulling force is 0.02 N. The elastic moduli are given in (28). (F) Topology-preserving
Reidemeister moves affect the elastic energy of the underlying fibers differently.
Move R1 induces strain and thus requires higher energy than R2 and R3, highlighting
that both topological and elastic properties determine the mechanical behavior of knots.
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Fig. 2. Topology and self-twisting in 1-tangles and 2-tangles. (A) Top: A 1-tangle
is tightened by pulling its two ends in opposite directions (large exterior arrows).
The induced fiber velocity field (small interior arrows) in the center-of-mass
frame reverses its orientation near the fiber midpoint. Bottom: As the velocity field
is incompatible with any chosen global fiber orientation (black arrows), self-torque
data cannot be consistently assigned to a topological 1-tangle diagram. (B) Top:
Because of the presence of the two free ends, the pulling directions of a bend
knot (large exterior arrows) define a canonical global orientation on each of
the two fibers in the corresponding 2-tangle. Bottom: The alignment of local velocity

directions and fiber orientation permits the discretization of self-torque data over
crossings by assigning twist charges qi = ±1 to each vertex i as described in
the next panel. (C) Each individual fiber strand passing through vertex i induces a
rotation in the other strand, thus contributing ±1/2 to the vertex twist charge
qi = ±1, with sign corresponding to rotation handedness. Blue–blue and red–red
self-crossings found in more complex 2-tangles can be labeled accordingly. The
sum of the qi defines the total writhe Wr, providing a coarse-grained approximation
of the total self-torque in 2-tangles; the reef knot has Wr = 0. Fiber diameter is
0.4 mm and pulling force is 15 N in (A) and (B).
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Fig. 3. Topology determines the mechanical stability of 2-tangles. (A) Small
modifications in topology lead to substantial changes in the mechanical behavior
of 2-tangles, exemplified by the presence or absence of global rotation of the knot
body upon pulling (movie S2); fiber diameter is 0.4 mm and pulling force is 15 N.
Knots are shown in order of least stable (grief knot) to most stable (reef knot).
(B) Simulated tight configurations of knots are validated with real knots tied in nylon
rope (diameter, 20 mm) with horizontal ends being pulled. (C) Tight knots act
on themselves by right-handed (positive) and left-handed (negative) torques.
Equally directed torques lead to rolling (top), whereas opposite torques promote
locking (bottom) and thus stabilize a knot against untying. (D to F) Knot diagrams

oriented by pulling direction correspond to a topological state defined as the triple
of crossing number N, twist fluctuation t, and circulation G. These parameters
explain the relative stability of knots in the reef group (D) and the Carrick group (E).
(F) The Zeppelin bend is more stable than the alpine butterfly bend, displaying
both higher twist fluctuation and higher circulation. (G) Topological state reveals the
underlying structure of bend knots and separates stable knots from unstable
knots. The dimensionless topological friction, obtained from simulation, is
determined by the velocity response when the knot is pulled with a given force
and is a measure of the friction force caused by the knot (28). Labels in (G)
correspond to those in (D), (E), and (F) and additional knots listed in fig. S3.
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and C). In analogy to the coarse-graining proce-
dure underlying Ising-type spinmodels, we can
associate a unit twist charge qi = ±1 with each
vertex i in the planar 2-tangle diagram, where
the sign of qi reflects the combinedhandedness
of the torques acting on the two intersecting

strands (Fig. 2C). The sumWr ¼
X

i

qi, math-

ematically known as the writhe, represents
the total self-torque of a 2-tangle, establish-
ing a concrete link between topology and
mechanics.
A key puzzle of physical knot theory (9), the

empirically observed mechanical difference
between the visually similar reef and granny
knots (Fig. 3, A and B), may be understood as a
consequence of this torque–writhe correspon-
dence in 2-tangles. The underlying mecha-
nism becomes evident by considering a pair
of crossings as shown in Fig. 3C. Whereas
equally directed torques lead to rolling, oppo-
site torques promote locking and thus stabilize
a knot against untying. The overall stability of
2-tangles therefore depends on the self-torque
distribution along the fibers, as encoded by the
vertex twist charges qi = ±1 in an untightened
knot diagram (Fig. 3, D to F). The above argu-
ment suggests the following topological twist
fluctuation energy per site:

t ¼ 1
N

X

i

ðqi # !qÞ2

¼ t0ðNÞ # 2
N2

X

i<j

qiqj ð1Þ

where N is the crossing number, !q ¼ ð1=NÞP
i qi ¼ Wr=N is the average writhe, and t0 =

1 – 1/N can be interpreted as a ground-state
energy density (28). Equation 1 has the form
of a ferromagnetic energy for an Ising-type
spin model with long-range interactions, em-
phasizing the concept of knots as strongly
coupled systems.
In addition to twist locking for large values

of t, knots can be stabilized when their inter-
nal structure forces fiber segments to slide
tangentially against each other. For example,
the reef knot and the thief knot both have t = 1,
but because their pulled ends differ, friction
makes the reef knot more stable (Fig. 3, D
and G). At the coarse-grained level of planar
knot diagrams, these friction effects corre-
spond to edge-to-edge interactions dominated
by pairs of edges sharing a face and pulled in
opposite directions (Fig. 3, D to F). To formal-
ize this notion, each edge around a face F is
assigned aweight of +1 or –1 if it winds around
F in the anticlockwise or clockwise direction,
respectively. Each face then contributes a fric-
tion energy given by the net circulation of the
edges around the face, CF, normalized by the
total number of edges eF. This yields the total
circulation energy:

G ¼
X

F

jCF j
eF

ð2Þ

where the sum is taken over all faces of the
knot diagram. The normalization encodes
the assumption that every face has the same

perimeter in the tight limit, ensuring that each
face contributes a maximum of +1 to G.
The topological parametersN, t, andG allow

us to rationalize the stability of a large class
of popular knots used by sailors and climbers
(Fig. 3G). These variables are easy to evaluate
fromknot diagrams (Fig. 3, D to F) and reflect
topology-induced forces and torques through-
out the knot. As such, the triplet (N, t, G) cap-
tures both essential topological andmechanical
structure hidden within knots. The (N, t, G)
phase diagram explains existing empirical
knowledge for simple knots (2), as well as
predictions of the Kirchhoff model about the
relative strength and stability of more com-
plex 2-tangles (Fig. 3G). We verified these
predictions independently in experiments
by mimicking the prisoner’s escape problem
(Fig. 4A) with two thin Dyneema fibers made
fromultra–highmolecularweight polyethylene
tied together (28). Of the two pulled ends for
each knot, one is fixed in the experimental
apparatus and the other is perturbed while
suspending incrementally higher masses
until the knot pulls through. Although the
Kirchhoff model cannot account for surface
contact details (30), the experimental data
for the critical loads agree quantitatively
with the simulations for simple knots and,
more importantly, confirm the predicted qua-
litative stability differences between various
commonly used knots (Fig. 4B). Notably, both
theory and experiments indicate that the
Zeppelin knot is more secure against untying
than the popular alpine butterfly knot (Fig. 4,
B and C).
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Fig. 4. Experiments for commonly used knots validate the theoretically
predicted phase diagram. (A) Our experimental setup (28) mimics the classical
prisoner’s escape problem by determining the critical pulling force F = mg at
which two lines untie. (B) Experiments measuring the critical mass m at which
two Dyneema fibers untie confirm the ranking of knot stability predicted by
simulations. For simpler knots with crossing number ≤8, averages (horizontal lines)
over individual experiments (small filled circles) agree quantitatively with the relative
strength predicted from simulations measuring both the velocity-based friction
(large empty circles) and the total compression force (large empty triangles) within

the knot (28); black boxes indicate standard deviations of the individual experiments,
with N = 9 grief (Gf), N = 8 thief (Th), N = 12 granny (Gy), N = 16 reef (Re),
N = 6 alpine butterfly (Ab), and N = 6 Zeppelin (Ze) knots. For complex knots with
high crossing number, such as the Zeppelin bend, more sophisticated models
accounting for material-specific friction forces and three-dimensional contact details
need to be developed in the future. Fiber diameter is 0.15 mm. (C) Nonetheless,
simulations of complex bends with generic friction (28) show good shape agreement
with tight configurations of bends in nylon ropes (diameter, 20 mm) and reveal
the highly nonuniform strain distributions in such knots.
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To conclude, the above analysis shows how
basic topological counting rules can be used
to estimate the relative stability of frequently
encountered knots and tangles. From a theo-
retical perspective, the parallels with long-
range coupled spin systems suggest that the
statistical mechanics (4, 21) of general knotted
structures can be formulatedwithin this frame-
work. Tangled vortices (12, 17) in complex fluids
and defect loops in liquid crystals (15) may
permit similar statistical descriptions through
reduction to topological crossing diagrams. In
elastic systems, joint experimental and theo-
retical progress is needed to untangle long-
standing puzzles regarding the statistics of
knots inDNA (18) and proteins (20, 21), where
thermal effects induce a finite persistence
length, and other macroscopic structures
(8, 24). In sailing, climbing, and many other
applications, nontopological material param-
eters and contact geometry (30) also play im-
portantmechanical roles andmust be included
in more refined continuum models to quanti-
tatively describe practically relevant knotting
phenomena. From a broader conceptual and
practical perspective, the above topological
mechanics framework seems well suited for
designing and exploring new classes of knots
with desired behaviors under applied load.
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