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Abstract: A knot is the weakest point of every rope, and the knot efficiency measures the portion of
original rope strength taken away by the knot. Despite possible safety implications, surprisingly
little attention has been paid to this life-critical quantity in research papers. Knot efficiency is directly
immeasurable and the only way to obtain it is by calculation from rope breaking strength. However,
this complication makes room for a wide spectrum of misleading concepts. The vast majority of
authors do not treat knot efficiency as a random variable, and published results mostly suffer from
incorrect statistical processing. The main goal of the presented paper is to fix this issue by proposing
correct statistical tools needed for knot efficiency assessment. The probability density function of knot
efficiency ψ(η) has been derived in general, as well as for normally distributed breaking strength.
Statistical properties of knot efficiency PDF have been discussed, and a less complex approximation
of knot efficiency PDF has been proposed and investigated.

Keywords: knot efficiency; probability density function; cumulative distribution function; statistical
properties

1. Introduction

Mountain rescuer, mountain guide, alpine climber, speleologist, worker at height—
these are professions where ropework and knot manipulation can be considered as life-
critical and must be mastered at a professional level. Despite possible safety implications,
surprisingly little attention has been paid to so-called knot efficiency in scientific journals
and research papers. Available textbooks and guidelines refer to the obsolete information
sources. Many cited conclusions are based on weak statistical datasets, and tested knots
are occasionally tied incorrectly, paying minimal attention to the type of load and distin-
guishing symmetry of knots. Experimental setup has usually not been professionally built,
and regularly calibrated, incomparable studies are merged together to produce useless
conclusions. The last but not least, incorrect statistical apparatus is used to evaluate the
results and to express their interpretation [1,2]. The majority of mentioned issues have
already been addressed in a recent study [2]. However, the problem with incorrect statistical
treatment of knot efficiency remains. In the following text we would like to point to the
common misleading ideas as the most common sources of statistical mistakes.

Experimental data has shown that knot efficiency cannot be treated as a sharply edged
single value but as a continuous random variable [2,3]. Accepting this concept immediately
introduces a set of questions: What is the probability distribution of knot efficiency? How
can we find typical statistical benchmarks such as mean, variance, median, mode, and
tolerance intervals? All these questions should be answered, and a consistent mathematical
methodology for knot efficiency assessment should be proposed and established.

It is a well-known fact that a knot is the weakest point on a rope [4]. Therefore, it
is not surprising that every rope breaks at the point where a knot is placed. To measure
how much of original rope strength was taken away by placing a knot, the so-called knot
efficiency η = X

Y has been introduced [1–3].
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Definition 1. Let X be the static breaking strength of rope where a single particular knot has been
tied, and let Y be the straight rope static breaking strength, both measured in units of force. We say
that dimensionless quantity

η =
X
Y

(1)

is the knot efficiency of a particular knot.

Knot efficiency is usually expressed in percent. With probability bordering with
certainty, a knotted rope is weaker than a straight one; hence, the knot efficiency is a
number between 0 and 100%. As a rule of thumb we can say that the higher the knot
efficiency, the higher the probability that particular knot withstand loaded force. For
example, there is a group called loop knots, designated mainly to form an anchoring loop.
It has been shown that efficiency of loop knots ranges approximately from 45% to 85%,
depending on a particular knot, its symmetry, and the geometry of applied forces [1–3,5–7].

Based upon the Definition 1 it is clear that no one can evaluate knot efficiency by a
single measurement. It is necessary to measure breaking strength of the knotted rope firstly,
and subsequently to select another piece of rope from the same batch and measure straight
rope breaking strength. Then, it is possible to calculate the ratio.

Statistical analysis performed on experimental dataset of broken ropes showed that
both the quantity X as well as Y can be considered as a random variable with normal
probability distribution function. Approximately 200 straight rope breaking strengths
measurements and 80 knotted rope breaking strength measurements have been studied
using Q-Q plots, Kolmogorov-Smirnov and Shapiro-Wilk tests. The target was to check
the null hypothesis, i.e., the normal distribution model fits the observations. The results did not
show a significant departure from the normality; therefore, the null hypothesis could not be
rejected [2]. This immediately leads to the conclusion that heterogeneity is a fundamental
feature of every rope, breaking strength is different from point to point and its variance
cannot be neglected. It is crucial to become familiar with concept that any value not
forbidden by physical laws can be measured with some probability and the same breaking
strength will not always be observed.

At this point, the problem of knot efficiency evaluation become challenging for many
authors. Two misleading concepts can be found across the textbooks and research papers:

1. Two randomly selected pieces of rope are picked. A knot is placed on the first rope
segment and afterwards it is broken to get value X. A second rope segment is broken
in a straight setup without placing a knot to get value Y. Knot efficiency is calculated
as the ratio η = X

Y . The total number of performed measurements is 2.
This basic approach is the most widely spread because it is simple, relatively fast,
and inexpensive (only two pieces of rope need to be destroyed). However, at the
same time, results are significantly dependent on rope segment selection because this
strategy does not take heterogeneity of inspected rope into account. Risk of improper
efficiency assessment is high. Although this may seem obvious for the educated
reader, this is the most common mistake, widely spread across the vast majority
of texts.

2. A more advanced, but still incorrect approach is based on the following idea. Split a
rope into n + m segments (unfortunately both n and m are usually a small numbers).
Place a particular knot on randomly picked n of them, and perform breaking strength
measurements. Get the experimental outcomes DX = {x1, . . . , xn} and evaluate
mean value E(X) = 1

n ∑n
i=1 xi, and sometimes also the variance Var(X) = 1

n−1 ∑n
i=1

(xi − E(X))2 is evaluated. Break the remaining m segments in a straight setup without
placing a knot to get the set of values DY = {y1, . . . , ym} with mean value E(Y)
and variance Var(Y). Evaluate the mean knot efficiency as the ratio E(η) = E(X)

E(Y) .
Variances are usually left aside as they are not recognised as being a useful piece
of information.
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This concept is the second most widely spread and slightly better than the first one
since it at least reflects the heterogenous nature of rope and it implicitly indicates
that the author is familiar with the random nature of breaking strength. However, it
remains incorrect even if x and y are independent, at least because it is easy to prove
that E(X/Y) = E(X)E(Y−1)︸ ︷︷ ︸

x,y- independent

6= E(X) 1
E(Y) =

E(X)
E(Y) [8].

The main objective of the presented paper is to shed light on the mathematical back-
ground of knot efficiency properties as a random variable. Four main objectives can
be formulated:

• to derive the PDF of the knot efficiency in general (see Section 2.1);
• to derive the special case PDF ψ(η) of the knot efficiency when breaking strength of

knotted and straight rope is normally distributed (see Section 2.2);
• to explore properties of ψ(η) (see Section 2.3);
• to find a simpler yet accurate approximation to a relatively complex function ψ(η) in

order to make calculations less demanding. In addition, we aim to specify the field of
application, advantages, and drawbacks (see Section 2.4).

2. Results
2.1. Probability Density Function of the Knot Efficiency ψ(η) in General

Quantities X and Y can be considered as absolutely independent by definition. Tested
rope pieces are carefully shuffled before measurement, and the very nature of breaking
strength measurement is destructive. Performing repeated measurement on the same piece
of rope is ruled out. Hence we are able to write following relation:

P(a ≤ X < b, c ≤ Y < d) = P(a ≤ X < b)P(c ≤ Y < d). (2)

We can even more generally write an equation for probability of such events where the
measurement of the independent vector (X, Y) falls into a simple connected region M ⊂ R2

using a continuous joint probability density function ρ(x, y) = ρX(x)ρY(y) [8]:

P((X, Y) ∈ M) =
∫∫

M
ρX(x)ρY(y)dxdy. (3)

Here, ρX is the PDF of knotted rope breaking strength and ρY is the straight rope break-
ing strength PDF in general. Both of them are continuous for ∀x, y ∈ R and normalised:∫ ∞
−∞ ρX(x)dx =

∫ ∞
−∞ ρY(y)dy = 1 . Let the product ρXρY be normalised to secure probabil-

ity conservation in R2 space:

P((X, Y) ∈ R2) =
∫ ∞

−∞

∫ ∞

−∞
ρX(x)ρY(y)dxdy = 1. (4)

All the points satisfying relation η = x
y or alternatively x = ηy are localised on straight line

passing through the axes origin with zero offset and with slope defined by knot efficiency.
Similarly, points satisfying relation η + dη = x

y or alternatively x = (η + dη)y lie on a
slightly more sloped straight line passing through the origin of axes [9]. Region dΩ(η)
between the two lines is the set of all the points with property η < x

y < η + dη (see
Figure 1).
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x=η.y

x=(η+dη).y

dΩ(η)

dΩ(η)

x

y

Figure 1. Region dΩ(η) is the set of points between the two lines given by equations η = x
y (red line)

and η + dη = x
y (blue line).

Definition 2. The region dΩ(η) is the set of all the points (x, y) ∈ R2 bounded between lines
x = ηy on the one side and x = (η + dη)y on the other (see Figure 1). Every point of this set refers
to the knot efficiency from interval (η, η + dη), or in other words:

∀(x, y) ∈ [dΩ(η) ⊂ R2] : η <
x
y
< η + dη. (5)

Note that the red and blue line switch their relative positions as they cross the origin. Therefore,
precise formulation of region dΩ(η) requires the following set of inequalities:

dΩ(η) = {(x, y) ∈ R2|([ηy < x < (η + dη)y] ∧ y > 0) ∨ ([ηy > x > (η + dη)y] ∧ y < 0)}. (6)

At this point, all the preliminary issues have been addressed and we can introduce the
knot efficiency PDF.

Definition 3. Let η = X
Y be a knot efficiency and dη → 0+ be an infinitesimally small differential

of the knot efficiency. Furthermore, let ψ : R→ [0, ∞) be a continuous, non-negative, Riemann-
integrable function.

Then we say that ψ is the knot efficiency PDF if following relations are satisfied:

• P(η ≤ X
Y < η + dη) =

∫ η+dη
η ψ(t)dt = ψ(η)dη;

•
∫ ∞
−∞ ψ(η)dη = 1.

Definition 3 makes a connection between the knot efficiency and breaking strength:∫∫
dΩ(η)

ρX(x)ρY(y)dxdy = ψ(η)dη. (7)

Graphical representation of the knot efficiency PDF is shown in the Figure 2. The value of
ψ(η) is equal to the volume between the joint PDF ρ and the particular region dΩ(η). The
left side of this equation can be expanded with respect to the Definition 2:∫∫

dΩ(η)
ρX(x)ρY(y)dxdy =

∫ 0

−∞
ρY(y)

∫ ηy

(η+dη)y
ρX(x)dxdy +

∫ ∞

0
ρY(y)

∫ (η+dη)y

ηy
ρX(x)dxdy (8)

Attention should be paid to the pair of integrals
∫ (η+dη)y

ηy ρX(x)dx and
∫ ηy
(η+dη)y ρX(x)dx,

respectively. Function ρX(x) is continuous, so there is room for significant simplification
assuming the existence of indefinite integral

∫
ρX(x)dx = R(x) + C:∫ (η+dη)y

ηy
ρX(x)dx = R([η + dη]y)− R(ηy) =

R(ηy + dηy)− R(ηy)
ydη

ydη
dη→0+
= yρX(yη)dη. (9)

Keep in mind that this holds true only for y > 0. The second integral can be simplified for
y < 0 in a similar manner:∫ ηy

(η+dη)y
ρX(x)dx = R(ηy)− R([η + dη]y) = −R(ηy + dηy)− R(ηy)

ydη
ydη

dη→0+
= (−y)ρX(yη)dη. (10)
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Taking these results into account Equation (8) can be rewritten:

∫∫
dΩ(η)

ρX(x)ρY(y)dxdy =
∫ 0

−∞
(−y)ρX(yη)ρY(y)dηdy +

∫ ∞

0
yρX(yη)ρY(y)dηdy =

=
∫ ∞

−∞
|y|ρX(yη)ρY(y)dηdy =

(∫ ∞

−∞
|y|ρX(yη)ρY(y)dy

)
dη = ψ(η)dη (11)

Theorem 1. Let ρX be the PDF of knotted rope breaking strength and ρY be the straight rope
breaking strength PDF. Both of them are continuous and independently normalised, and their joint
bivariate distribution ρ(x, y) = ρX(x)ρY(y) is normalised on R2:

∫∫
R2 ρX(x)ρY(y)dxdy = 1.

Finally, let η be the knot efficiency given by Definition 1.
Then the relation between ρX , ρY and probability density function of the knot efficiency ψ (see

Definition 3) is given by convolution:

ψ(η) =
∫ ∞

−∞
|y|ρX(yη)ρY(y)dy. (12)

Proof of Theorem 1. Theorem 1 has been proven directly in text by Equations (8)–(11).

Equation (12) presented in Theorem 1 can also be derived by different mathematical
pathways and it has already been published in research papers [10–13].

Figure 2. (a) Probability density function ρ(x, y) = ρX(x)ρY(y) on the upper figure. Volume under
the PDF over the whole R2 space is equal to the probability of measuring any knot efficiency, i.e.,
P = 1. (b) On the lower picture, there are several slices of the PDF over the regions dΩi. Volume
between the PDF and particular region is equal to the probability of measuring knot efficiency in
range [ηi, ηi + dη].

2.2. Probability Density Function of the Knot Efficiency for Normally Distributed
Breaking Strength

Theorem 1 gave us a blueprint how to calculate the knot efficiency PDF for arbitrarily
distributed breaking strength of rope with or without a knot. However, it has been shown
by [2] that ρX and ρY of real ropes (knotted or straight) can be satisfactorily modelled
by normal distribution with high level of accuracy. Another good reason why normal
distribution should be used is the maximum information entropy principle [14–16] which
favours the normal distribution (or its truncated version) if mean value and variance is
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given [17]. The central limit theorem is the last argument in favour of normal distribution.
The more processes influence the breaking strength experiment within measurement, the
more different dispersive factors are summed, and the more values it is averaged over.
Thus, the more it tends to be normally distributed about the mean value, no mater what
distribution it initially obeyed [8,18,19]. Therefore, it is worth trying to find a closed-form
solution [20,21] to the convolution (12) for this special case.

Definition 4. Let X be the static breaking strength of knotted rope. It will be considered as a
continuous random variable with sample space DX = R and probability density function:

ρX(x) =
1√
2πσ

e−
(x−x̄)2

2σ2 . (13)

Here x̄ = E(X) =
∫ ∞
−∞ xρX(x)dx is mean value and σ2 = Var(X) =

∫ ∞
−∞(x− x̄)2ρX(x)dx is

variance of static breaking strength of knotted rope. Value X ∈ [a, b) is measured with probability

P(a ≤ X < b) =
∫ b

a
ρX(x)dx =

1
2

(
erf
[

b− x̄√
2σ

]
− erf

[
a− x̄√

2σ

])
. (14)

Definition 5. Let Y be the static breaking strength of straight rope without any knot. It will be con-
sidered as a continuous random variable with sample space DY = R and probability density function:

ρY(y) =
1√
2πς

e
− (y−ȳ)2

2ς2 . (15)

Here ȳ = E(Y) =
∫ ∞
−∞ yρY(y)dy is mean value and ς2 = Var(Y) =

∫ ∞
−∞(y− ȳ)2ρY(y)dy is

variance of static breaking strength of straight rope. Value Y ∈ [c, d) is measured with probability

P(c ≤ Y < d) =
∫ d

c
ρY(y)dy =

1
2

(
erf
[

d− ȳ√
2ς

]
− erf

[
c− ȳ√

2ς

])
. (16)

Whenever it will be necessary to emphasize that breaking strength is normally dis-
tributed, notation X ∼ N (x̄, σ2) and Y ∼ N (ȳ, ς2) will be used in the following text.

Quantities X and Y are independent so Theorem 1 leads us towards the convolu-
tion problem:

ψ(η) =
1

2πσς

∫ ∞

−∞
|y| e

− 1
2

[
( yη−x̄

σ )
2
+
(

y−ȳ
ς

)2
]
dy. (17)

After applying a huge variety of algebraic transformations and parametric integration
techniques (for details see the Proof of Theorem 3), integral (17) boils down to relatively
complex, yet closed-form formula. Before we introduce it by Theorem 3, let us define new
parameters p, q, r necessary to keep mathematical formulae as simple as possible.

Definition 6. Let us introduce a triplet of new parameters p, q, r using quartet of known parameters
x̄, ȳ, σ, ς ∈ R+ by following equations:

p =
x̄√
2σ

q =
ȳ√
2ς

r =
x̄
ȳ

(18)

Let ~v = (p, q, r) be a vector in the space Π ⊂ R3 and Ξ ⊂ Π be a sector in this space restricted by
set of relations:

Ξ = {(p, q, r) ∈ Π|1 < p, 5 ≤ q, 0 < r ≤ 1}. (19)
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Theorem 2. Parameters p, q, r introduced by Definition 6 have following practical properties:

1. p is related to the probability of breaking strength X being a negative (nonphysical) number:

P(X < 0) = 1−erf(p)
2 ;

2. q is related to probability of breaking strength Y being a negative (nonphysical) number:

P(Y < 0) = 1−erf(q)
2 ;

3. r is ratio of expected values r = E(X)
E(Y) .

Proof of Theorem 2. Let us start with statement 1. Probability P(X < 0) is given by

integral 1√
2πσ

∫ 0
−∞ e−

(x−x̄)2

2σ2 dx. After substitution t = − x−x̄√
2σ

it transforms to integral

P(X < 0) =
1√
2πσ

∫ 0

−∞
e−

(x−x̄)2

2σ2 dx = − 1√
π

∫ x̄√
2σ

∞
e−t2

dt =

=
1√
π

∫ ∞

x̄√
2σ

e−t2
dt =

1
2

(
2√
π

∫ ∞

0
e−t2

dt− 2√
π

∫ x̄√
2σ

0
e−t2

dt

)
. (20)

Recall that erf(z) is so called error function defined as erf(z) = 2√
π

∫ z
0 e−t2

dt, asymptotically
converging to limz→±∞ erf(z) = ±1 [22]. Taking definition of error function into account,
we may conclude:

P(X < 0) =
1
2

(
lim
t→∞

erf(t)− erf
[

x̄√
2σ

])
=

1− erf(p)
2

. (21)

Statement 2 would be proven by the same reasoning. Proof of statement 3 is straight
forward and doesn’t require our attention.

Assumption 1. Parameters p, q, r defined by Definition 6 and calculated from real data has follow-
ing property:

~v = (p, q, r) ∈ Ξ. (22)

Assumption 1 is based on robust experimental evidence [1,2]. It can be taken as a
bomb-proof fact that every real knot breaks in average under lower tension than straight
rope. Thus, we are allowed to assume relation 0 < x̄ ≤ ȳ, which implies 0 < x̄

ȳ ≤ 1 or
r ∈ (0, 1]. Parameters p, q, r for real knots have such values that probability P(X < 0)
and P(Y < 0) is nonzero, but negligibly small [2]. Several examples of how small these
numbers may actually be are calculated in Table 1.

Table 1. Several tabulated probabilities of negative breaking strength as a function of parameter q
calculated using formula P(Y < 0) = 1−erf(q)

2 .

q 1 2 3 4 5

P(Y < 0) 7.86 · 10−2 2.34 · 10−3 1.10 · 10−5 7.71 · 10−9 7.69 · 10−13

Now we are done with all the preliminaries. Let us make a step forward and introduce
the knot efficiency PDF for normally distributed breaking strengths.

Theorem 3. Let variable X ∼ N (x̄, σ2) and Y ∼ N (ȳ, ς2) be normally distributed with respect
to Definition 4 and 5. Let us define parameters p, q, r the same way as in Definition 6.
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Let s : R→ R be a continuous and bounded function defined by equation:

s(t) = q
1 + p2

q2 t√
1 + p2

q2 t2
. (23)

Than the knot efficiency η = X
Y is distributed by PDF ψ : R→ R+:

ψ(η) =
1
π

p
q

e
−q2(1+ p2

q2 ) 1 +
√

πs( η
r )e

s2(
η
r )erf[s( η

r )]

1 + p2

q2

( η
r
)2

1
r

. (24)

Proof of Theorem 3. Proof is quite simple, mostly subject to basic algebra, but it demands
time and effort. Therefore, we sketch only the key ideas and leave the remaining calculations to

the reader. The central problem is to find integral ψ(η) = 1
2πσς

∫ ∞
−∞ |y| e

− 1
2

[
( yη−x̄

σ )
2
+
(

y−ȳ
ς

)2
]
dy.

Let’s expand the exponent: − 1
2

[(
yη−x̄

σ

)2
+
(

y−ȳ
ς

)2
]
= κy2 + λy + ν. Coefficients κ, λ, ν

have been introduced for the sake of simplicity:

κ = − q2

ȳ2

(
1 +

p2

q2

[η

r

]2
)
≤ 0 ; λ = 2

q2

ȳ

(
1 +

p2

q2

[η

r

])
≥ 0 ; ν = −(p2 + q2) ≤ 0.

The exponent can be rewritten by completing the square:

κy2 + λy + ν = κ

(
y +

λ

2κ

)2
+ ν− λ2

4κ
= −|κ|

(
y− λ

2|κ|

)2
− |ν|+ λ2

4|κ| , (25)

hence we are solving much simpler integral:

∫ ∞

−∞
|y| eκy2+λy+νdy = e−|ν|+

λ2
4|κ|
∫ ∞

−∞
|y| e−|κ|

(
y− λ

2|κ|

)2

dy (26)

Recall that for ∀k, t0 > 0 the solution to the parametric integral
∫ ∞
−∞ |t|e

−k(t−t0)
2
dt is:

∫ ∞

−∞
|t|e−k(t−t0)

2
dt =

e−kt2
0

k

[
1 +
√

π
√

kt0ekt2
0erf[
√

kt0]
]
. (27)

The integration is finished by substitution k → |κ| and t0 → λ
2|κ| . An ubiquitous term

√
kt0 transforms to

√
kt0 → λ2

4|κ| = s( η
r ). The rest of the proof is straightforward, requiring

mostly basic algebra resulting in formula: ψ(η) = 1
π

p
q e
−q2(1+ p2

q2 ) 1+
√

πs( η
r )e

s2( η
r )erf[s( η

r )]

1+ p2

q2 (
η
r )

2
1
r .

Similar conclusions, but with different parametrisation or in different algebraic forms
has already been published in papers dealing with ratio distributions, for example [12,23–28].

Several examples of real data knot efficiencies as well as ill-defined ones are sketched
in Figure 3.
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Figure 3. (a) Example of the knot efficiency PDFs for three different real life situations on the left side.
PDF ψ1(η) depicted by blue line belongs to the standardly loaded figure eight loop knot tied on brand
new kernmantle static rope. PDF ψ2(η) depicted by a yellow line belongs to the double fisherman’s
bend tied on brand new kernmantle static rope. PDF ψ3(η) depicted by the green line belongs to the
cross-loaded figure eight loop tied on heterogenous, extremely worn static rope at the very end of
its mission. The area under each curve equals 1. (b) An example of two knot efficiency PDFs with
extraordinarily tuned parameters (p, q, r) /∈ Ξ that could never be realised in a real experiment.

2.3. Properties of Knot Efficiency PDF ψ(η)

1. Knotted rope breaking strength PDF is parameterised by two parameters x̄, σ and
straight rope breaking strength PDF by another two parameters ȳ, ς. However, knot
efficiency PDF is fully parameterised only by three parameters p, q, r instead of four
(see Theorem 3, Equation (24)). Other parameterisations employing another triplets
of parameters are also possible.

2. Knot efficiency PDF is not a symmetric function under general reflection. Although
it may seem symmetric upon first sight (see Figure 3a), it is important to stress that,
depending on parameters p, q, r it may be noticeably tailed or even bimodal. This is
especially apparent if (p, q, r) /∈ Ξ (see Figure 3b).
In other words, for an arbitrary choice of parameters p, q, r there does not exist such a
point η0 that ψ(η) would not change with respect to reflection over it:

∃(p, q, r) ∈ R3, ∀η0 ∈ R, ∃η ∈ R : ψ(η0 + η) 6= ψ(η0 − η). (28)

3. Cumulative distribution function of knot efficiency Ψ(η).

Definition 7. Let ψ(η) : R → R+ be the knot efficiency PDF defined in Theorem 3 by
Equation (24). Probability that knot efficiency η drawn from PDF ψ(η) is lower than η0 is
given by cumulative distribution function Ψ : R→ [0, 1]

P(η < η0) = Ψ(η0) =
∫ η0

−∞
ψ(η)dη. (29)

Function Ψ(η) is continuous, non-decreasing (because ∀η ∈ R : ψ(η) ≥ 0) and
satisfies properties limη→−∞ Ψ(η) = 0 and limη→∞ Ψ(η) = 1.

It can be used to calculate probability: P(a ≤ η < b) =
∫ b

a ψ(η)dη = Ψ(b)− Ψ(a).
Unfortunately, it is not possible to express Ψ(η) as a finite combination of elementary
functions because integral

∫ b
a ψ(η)dη does not have a closed-form solution. This is

somewhat inconvenient because Ψ(η) is essential to calculate probabilities, tolerance
intervals, and quantiles. To evaluate any practical outcome, it is required to involve
numerical methods. Another possibility is to use Hinkley’s formula [12] using so
called Bivariate normal distribution function L(x1, x2, x3) numerically tabulated by the
National Bureau of Standards [29] or some of its approximations [30,31].

4. An interesting feature of Equation (24) is that it entirely depends on argument η
r .

Ratio p
q is also omnipresent across the whole body of ψ. Let us call the quantity η

r the

relative knot efficiency and reserve symbol µ to label it. Substitution η
r → µ is directly
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coupled with related differential transformation 1
r dη = dµ. Probability must remain

invariant under such a transformation, so the following equation holds true:

P(a ≤ η < b) =
∫ b

a
ψ(η)dη =

∫ b

a

1
π

p
q

e
−q2(1+ p2

q2 ) 1 +
√

πs( η
r )e

s2(
η
r )erf[s( η

r )]

1 + p2

q2

( η
r
)2

1
r

dη︸︷︷︸
dµ

=

=
∫ b

r

a
r

1
π

we−q2(1+w2) 1 +
√

πs(µ)es2(µ)erf[s(µ)]
1 + w2µ2︸ ︷︷ ︸

φ(µ)

dµ = Φ(
b
r
)−Φ(

a
r
) (30)

Several new elements have been introduced to simplify the expressions so let us
define them properly:

Definition 8. Let us define a new dimensionless quantity µ = η
r and name it relative

knot efficiency.

• Let w
de f
= p

q = x̄ς
ȳσ be a new parameter. If ~v ∈ Ξ, then parameter w falls into range

w ∈ R+;
• PDF of relative knot efficiency is the function φ(µ):

φ(µ)
de f
=

1
π

we−q2(1+w2) 1 +
√

πs(µ)es2(µ)erf[s(µ)]
1 + w2µ2 . (31)

• cumulative distribution function of relative knot efficiency is the function Φ(µ):

Φ(µ)
de f
=
∫ µ

−∞
φ(t)dt; (32)

Note that relative knot efficiency PDF φ is completely parameterised only by two
parameters w, q.

5. The relation between Ψ and Φ is given by probability conservation principle. Equality

of the following integrals is guaranteed
∫ η
−∞ ψ(t)dt =

∫ η
r
−∞ φ(t)dt, or:

Ψ(η) = Φ(
η

r
); (33)

6. Probability that knot efficiency is a non-physical negative number is invariant of r
and equals: P(η < 0) = Ψ(0) = Φ(0) =

∫ 0
−∞ φ(t)dt. In order to become familiar

with real knots values of Ψ(0), they have been calculated for selected combinations
of parameters w, q by means of numerical integration (see Table 2). It is clear that
P(η < 0) of real knots is negligibly small.
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Table 2. Probability P(η < 0) = Ψ(0) that non-physical negative knot efficiency will be measured,
tabulated for selected combinations of parameters w, q.

w = 0.2 w = 0.3 w = 0.4 w = 0.5 w = 0.6 w = 0.7 w = 0.8 w = 0.9 w = 1

q = 1 3.9 · 10−1 3.4 · 10−1 2.9 · 10−1 2.4 · 10−1 2.0 · 10−1 1.6 · 10−1 1.3 · 10−1 1.0 · 10−1 7.9 · 10−2

q = 2 2.9 · 10−1 2.0 · 10−1 1.3 · 10−1 7.9 · 10−2 4.5 · 10−2 2.4 · 10−2 1.2 · 10−2 5.5 · 10−3 2.3 · 10−3

q = 3 2.0 · 10−1 1.0 · 10−1 4.5 · 10−2 1.7 · 10−2 5.5 · 10−3 1.5 · 10−3 3.4 · 10−4 6.7 · 10−5 1.1 · 10−5

q = 4 1.3 · 10−1 4.5 · 10−2 1.2 · 10−2 2.3 · 10−3 3.4 · 10−4 3.8 · 10−5 3.0 · 10−6 1.8 · 10−7 7.7 · 10−9

q = 5 8.1 · 10−2 1.7 · 10−2 2.3 · 10−3 2.0 · 10−4 1.1 · 10−5 3.7 · 10−7 7.7 · 10−9 9.8 · 10−11 7.7 · 10−13

q = 6 4.7 · 10−2 5.5 · 10−3 3.4 · 10−4 1.1 · 10−5 1.8 · 10−7 1.4 · 10−9 5.7 · 10−12 1.1 · 10−14 1.1 · 10−17

q = 7 2.6 · 10−2 1.5 · 10−3 3.8 · 10−5 3.7 · 10−7 1.4 · 10−9 2.1 · 10−12 1.2 · 10−15 2.6 · 10−19 2.1 · 10−23

q = 8 1.4 · 10−2 3.6 · 10−4 3.0 · 10−6 7.7 · 10−9 5.7 · 10−12 1.2 · 10−15 7.1 · 10−20 1.2 · 10−24 5.6 · 10−30

q = 9 7.8 · 10−3 7.8 · 10−5 1.9 · 10−7 9.9 · 10−11 1.1 · 10−14 2.6 · 10−19 1.2 · 10−24 1.1 · 10−30 2.1 · 10−37

q = 10 4.7 · 10−3 2.2 · 10−5 1.5 · 10−8 1.5 · 10−12 2.2 · 10−17 4.2 · 10−23 1.1 · 10−29 4.1 · 10−37 2.1 · 10−45

7. Let m ∈ N0 and n ∈ N be non-negative integers. The probability that knot efficiency
falls into range [mr, nr) does not depend on r and equals:

P(mr ≤ η < nr) = Φ(n)−Φ(m) =
∫ n

m
φ(t)dt; (34)

8. Knot efficiency PDF (see Equation (24)) does not have a finite mean or variance. It
is a relatively easy task to prove that integrals

∫ ∞
−∞ ηψ(η)dη and

∫ ∞
−∞ η2ψ(η)dη are

divergent. Therefore, expected value E(η) is not finite (i.e., does not exist) and the
same goes for variance Var(η) [32,33].
Moreover, real knots never break at negative breaking strength, and a knotted rope
breaking higher than a straight one is extremely rare (to our knowledge it has never
been reported yet). Function ψ is continuous, non-negative, and bounded for ∀η ∈
[0, 1]. Therefore, it is well reasoned to calculate certainly finite mean η̄[0,1] and variance
σ2
[0,1] of truncated knot efficiency PDF, restricted on interval η ∈ [0, 1].

Definition 9. Let ψ be the knot efficiency PDF and Ψ be the knot efficiency CDF introduced
by Definition 7. Let φ be the solid approximation of relative knot efficiency PDF and Φ be
the solid approximation of relative knot efficiency CDF introduced by Definition 8. Then, the
expected value of knot efficiency η̄[0,1] on interval η ∈ [0, 1] is defined by equation:

η̄[0,1] =

∫ 1
0 ηψ(η)dη

Ψ(1)−Ψ(0)
= r

∫ 1/r
0 µφ(µ)dµ

Φ(1/r)−Φ(0)
. (35)

Analogically, variance of knot efficiency σ2
η[0,1] on interval η ∈ [0, 1] is defined by equation:

σ2
η[0,1] =

∫ 1
0 (η − η̄[0,1])

2ψ(η)dη

Ψ(1)−Ψ(0)
= r2

∫ 1/r
0

(
µ− η̄[0,1]

r

)2
φ(µ)dµ

Φ(1/r)−Φ(0)
. (36)

To our knowledge, both η̄[0,1] and σ2
η[0,1] have to be evaluated by numerical integration

techniques.
9. In general, neither mode nor median shall be identified with ratio r = x̄

ȳ as one may
intuitively suppose. The median knot efficiency η̃ can be evaluated only by means of
numerical integration by solving integral equation

∫ η̃
−∞ ψ(η)dη =

∫ ∞
η̃ ψ(η)dη = 1

2 or

Ψ(η̃) = 1−Ψ(η̃) =
1
2

. (37)

It will be shown later in the text (see Theorem 5), that median η̃ and ratio r = x̄
ȳ of

knot efficiency PDFs can be considered almost equal.
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10. PDF ψ(η) is in general bimodal [24], see Figure 3b. This means that it has two local
maxima instead of one. According to numerical studies presented in [32], PDF is
certainly bimodal if

√
2p > 2.256058904 · · · ≡ C. If

√
2p < C then the PDF may be

either bimodal or unimodal, depending on the exact position of vector ~v in the space
of the parameters. There is a region K ⊂ R+ ×R+ separated from the rest of space
by a simple curve Γ = ∂K such that for ∀(p, q) ∈, K is ψ unimodal. A good rule of
thumb to make an accurate decision about PDF modality is to check the following
two conditions:

• 0 < p < 1.6;
• 5.7 < q.

If both of them are satisfied simultaneously then knot efficiency PDF is almost cer-
tainly unimodal.
However, one should keep in mind that the left modes of bimodal functions may be
ignored in practical applications, as they are likely to occupy only a tiny fraction of
the total area under the full density function, typically 10−6 to 10−10 or less [32].
The mode of knot efficiency ηm is the most likely value to be drawn from knot
efficiency population. If the population PDF is continuously differentiable then the
mode is a solution to the pair of conditions:

dψ

dη
(ηm) = 0 ,

d2ψ

dη2 (ηm) < 0. (38)

11. About erf
[

1√
2

]
≈ 68% of values drawn from a normal distribution are within one

standard deviation away from the mean. This is a so-called 1σ tolerance interval
well known in statistics, or [x̄ − σ, x̄ + σ]. About erf

[
2√
2

]
≈ 95% of the values lie

within two standard deviations and about erf
[

3√
2

]
≈ 99.7% within three standard

deviations. For practical purposes, similar thresholds are also needed to be defined
for knot efficiency PDF.

• Knot efficiency analogy to 1σ tolerance interval (see Figure 4) is [η1L, η1H ].
Thresholds η1L, η1H have to meet pair of conditions: Ψ(η1L) = 1− Ψ(η1H) =
1
2

(
1− erf

[
1√
2

])
;

• In general, knot efficiency analogy to nσ interval for ∀n ∈ N is [ηnL, ηnH ]. The
following pair of conditions have to be fulfilled:

Ψ(ηnL) = 1−Ψ(ηnH) =
1
2

(
1− erf

[
n√
2

])
. (39)

Finding thresholds ηnL, ηnH is subject to the numerical integration and depends
on triplet of parameters {p, q, r} or {w, q, r}.
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η2 L ηm η
˜

η2 H1
η

ψ(η)

Figure 4. An example of heavily tailed knot efficiency PDF. Important points and intervals are
highlighted—modus (red dashed line), median (black dashed line), analogy to 1σ interval [η1L, η1H ]

is highlighted by blue shading, remaining interval to 2σ analogy is highlighted by pink shading.

2.4. Solid Approximation to the Knot Efficiency PDF

Knot efficiency probability density function ψ(η) given by Equation (24) is much
too complex; a closed-form solution to its Riemann integral does not exist, and many
related statistical properties are subject to numerical methods. These unwanted properties
apparently narrow the field of application for a standard user without expertise in numerical
mathematics. However, in many cases, it can be considerably simplified without significant
loss of accuracy. Depending on parameters p, q, r, function ψ(η) is more or less tailed.
The narrower and more symmetrical it is, the stronger simplification actions can be taken,
resulting in improved user manipulation comfort. Fortunately, real knots populations are
distributed with a considerable degree of mirror symmetry, and similarity with normal
distribution is usually quite high.

Presented approximation has been named solid. Loosely speaking, this is because it re-
mains highly accurate while offering significant simplification and closed-form integrability
at the same time. The simplifying chain consists of following three steps:

• Parameters p, q, r can be in general set to an arbitrary value. However, in the case
of real knots, wide range is ruled out by laws of physics; hence, they will never be
observed in real measurement. It has already been outlined in Assumption 1 that
the vector of parameters ~v = (p, q, r) always points into region ~v ∈ Ξ for real data.
Regarding the mentioned restrictions, function s( η

r ) is bounded:

∀η ∈ R+, ~v ∈ Ξ : min{p, q} ≤ s(
η

r
) ≤

√
p2 + q2; (40)

• Error function erf(t) is monotonous increasing, as t increases asymptotically reaching
limt→∞ erf(t) = 1. Hence, we are able to bound it:

∀η ∈ R+, ~v ∈ Ξ : min{erf(p), erf(q)} ≤ erf[s(η/r)] ≤ erf
[√

p2 + q2
]
≈ 1. (41)

The lower bound of s(η/r) is for ∀~v ∈ Ξ so close to the upper one, that with accuracy
far beyond all practical needs we can simply write: ∀η ∈ [0, 1], ~v ∈ Ξ : erf[s(η/r)] ≈ 1;

• Term
√

πs(η/r)es2(
η
r ) is many orders of magnitude higher than than 1. Therefore, we

can suppose:
1 +
√

πs(η/r)es2(
η
r ) ≈

√
πs(η/r)es2(

η
r ); (42)

• Concluding the above-mentioned reasoning, we are able to say:

∀η ∈ R+, ~v ∈ Ξ : 1 +
√

πs(η/r)es2(
η
r )erf[s(η/r)] ≈

√
πs(η/r)es2(

η
r ), (43)
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and after some algebraic manipulations we can proceed to approximation

ψ(η) ≈ ψ‡(η)
p√
π

1 + p2

q2
η
r[

1 + p2

q2

( η
r
)2
] 3

2
e

− p2

1+ p2

q2 (
η
r )

2 (
η
r −1)2

1
r

. (44)

A similar equation can be written for the relative knot efficiency PDF:

φ(µ) ≈ φ‡(µ) =
wq√

π

1 + w2µ

(1 + w2µ2)
3
2

e
− w2q2

1+w2µ2 (µ−1)2

. (45)

The simplifying steps brought several benefits. The complexity of formulae has been
lowered and it is finally possible to find closed-form solution to the Riemann-integral of ψ‡

and φ‡. This property opens the door to precise normalisation and simple calculation of
median, quantiles, and tolerance intervals.

Theorem 4. Let φ‡ : R→ R+ be continuous function defined by Equation (45). Then Riemann
integral

∫ µ
−∞ φ‡(t)dt has closed-form solution:

∫ µ

−∞
φ‡(t)dt =

1
2

(
erf

[
wq(µ− 1)√

1 + w2µ2

]
+ erf[q]

)
. (46)

Proof of Theorem 4. Function φ‡(µ) is continuous for ∀µ ∈ R, therefore Riemann-integrable

and we can write:
∫ µ
−∞ φ‡(t)dt = 1√

π

∫ µ
−∞ wq 1+w2t

(1+w2t2)
3
2

e−
w2q2

1+w2t2
(t−1)2

dt. Now let us make

a substitution wq(t−1)√
1+w2t2 = p coupled with differential transformation wq 1+w2t

(1+w2t2)
3
2

dt = dp

and boundary transformations −∞→ −q and µ→ wq(µ−1)√
1+w2µ2

. Then, the original integral

transforms to the much simpler one:

∫ µ

−∞
φ‡(t)dt =

1√
π

∫ µ

−∞
wq

1 + w2t

(1 + w2t2)
3
2

e−
w2q2

1+w2t2
(t−1)2

dt =
1
2

2√
π

∫ wq(µ−1)√
1+w2µ2

−q
e−p2

dp =

=
1
2
[erf(p)]

wq(µ−1)√
1+w2µ2

−q =
1
2

(
erf

[
wq(µ− 1)√

1 + w2µ2

]
+ erf[q]

)
.

Theorem 4 holds the key to finding normalisation factors. However, all the necessary
conditions have been met to define solid approximation to the knot efficiency and relative
knot efficiency, respectively.

Definition 10. Let ~v ∈ Ξ. Then, function ψ†(η) : R→ R+ is the solid approximation to the knot
efficiency PDF given by equation:

ψ†(η) =
1√
π

p
erf[q]

1 + p2

q2
η
r(

1 + p2

q2
η2

r2

) 3
2

e

−
p2( η

r −1)
2

1+ p2

q2
η2

r2 1
r

. (47)
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Probability that knot efficiency η drawn from PDF ψ†(η) is lower than η0 is given by cumulative
distribution function Ψ† : R→ [0, 1]

P(η < η0) = Ψ†(η0) =
∫ η0

−∞
ψ†(η)dη =

1
2


1 +

erf

 p( η0
r −1)√

1+ p2

q2
η2

0
r2


erf[q]


. (48)

Definition 11. Let ~v ∈ Ξ and w ∈ (0, 1]. Then function φ†(µ) : R → R+ is the solid
approximation to the relative knot efficiency PDF given by equation:

φ†(µ) =
1√
π

wq
erf[q]

1 + w2µ

(1 + w2µ2)
3
2

e
− w2q2

1+w2µ2 (µ−1)2

. (49)

The probability that relative knot efficiency µ drawn from PDF φ†(µ) is lower than µ0 is given by
cumulative distribution function Φ† : R→ [0, 1]

P(µ < µ0) = Φ†(µ0) =
∫ µ0

−∞
φ†(µ)dµ =

1
2

1 +
erf
[

wq(µ0−1)√
1+w2µ2

0

]
erf[q]

. (50)

Solid approximation addressed almost all the original drawbacks of PDFs ψ(η) and
φ(η). Significant improvement has been achieved in the following aspects:

1. Both PDF formulae ψ†, φ† are less complex than ψ, φ; hence, they are more suitable
for practical calculations. Both of them are normalised, i.e., they obey integral relation∫ ∞
−∞ ψ†(η)dη =

∫ ∞
−∞ φ†(η)dη = 1. For any reasonable combination of parameters

∀~v ∈ Ξ, solid approximation is indistinguishable from ψ, φ.
2. Both CDFs Ψ† and Φ† are closed-form formulae (see Definitions 10 and 11). Function

Φ† is slightly simpler than Ψ† so it is recommended to use it for calculations whenever
possible. Relation Ψ†(η) = Φ†( η

r ) holds true.
3. Since Φ† is defined by explicit closed-form formula, median of solid approximation

η̃† can be simply calculated by the following equation: Φ†( η̃†

r ) =
1
2 .

Theorem 5 (Median η̃†). Let Ψ†(µ) be a solid approximation to relative knot efficiency CDF
(see Definition 10). Then solid approximation to the median of knot efficiency η̃† is:

η̃† =
x̄
ȳ

. (51)

Proof of Theorem 5. Median η̃† can be found from equation Ψ†(η̃†) = Φ†( η̃†

r ) =
1
2 .

According to Definition 10, it is possible to rewrite the equation:

erf

 wq( η̃†

r − 1)√
1 + w2

(
η̃†

r

)2

 = 0. (52)

The solution is η̃† = r.

Position of the median η̃† is shown in the Figure 5.
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4. Solid approximation analogy to 1σ and 2σ tolerance interval can be found explicitly

whenever condition ~v ∈ Ξ is met. Solutions to equations Ψ†(η†
nL) =

1
2

(
1− erf

[
n√
2

])
and 1−Ψ†(η†

nH) =
1
2

(
1− erf

[
n√
2

])
for n ∈ {1, 2} are:

• 1σ† interval: [η†
1L, η†

1H ] =

r
1− 1√

2wq

√
1+w2− 1

2q2

1− 1
2q2

, r
1+ 1√

2wq

√
1+w2− 1

2q2

1− 1
2q2


• 2σ† interval: [η†

2L, η†
2H ] =

r
1−
√

2
wq

√
1+w2− 2

q2

1− 2
q2

, r
1+
√

2
wq

√
1+w2− 2

q2

1− 2
q2


Ranges of 1σ† and 2σ† intervals are shown in the Figure 5 by colour shading.
Note that 1σ† and 2σ† formulae are valid approximations if 5 ≤ q. Otherwise, more
complex closed-form formulae containing inverse function erf−1 can be easily derived.

5. It has already been stated that knot efficiency distributed by PDF ψ(η) does not have
a finite mean or variance. Solid approximation itself does not bring any progress
on this issue because PDF ψ† also leads to divergent integrals

∫ ∞
−∞ ηψ†(η)dη or∫ ∞

−∞ η2ψ†(η)dη. Nonetheless, truncated mean and variance can be calculated on the
interval η ∈ [0, 1] based on the same principles as Definition 9.

• Solid approximation to knot efficiency mean on the interval η ∈ [0, 1]:

η̄†
[0,1] =

∫ 1
0 ηψ†(η)dη

Ψ†(1)−Ψ†(0)
= r

∫ 1/r
0 µφ†(µ)dµ

Φ†(1/r)−Φ†(0)
; (53)

• Solid approximation to knot efficiency variance on the interval η ∈ [0, 1]:

σ2†
η[0,1] =

∫ 1
0 (η − η̄†

[0,1])
2ψ†(η)dη

Ψ†(1)−Ψ†(0)
= r2

∫ 1/r
0

(
µ−

η̄†
[0,1]
r

)2

φ†(µ)dµ

Φ†(1/r)−Φ†(0)
. (54)

To our knowledge, both η̄†
[0,1] and σ2†

η[0,1] have to be evaluated by numerical integration.

Position of the truncated mean η̄†
[0,1] and standard deviation σ†

η[0,1] is shown in the
Figure 5 by dotted lines.

η+2 L η
˜+η+m η+ η+2 H 1

η

ψ+(η)

Figure 5. Comparison of knot efficiency PDF ψ(η) and solid approximation of knot efficiency PDF
ψ†(η). In fact, the two functions overlap so precisely that they are indistinguishable. Important
points and intervals are emphasized: modus η†

m, median η̃†, mean η̄†
[0,1], 1σ† interval is highlighted

by blue shading, remaining interval to 2σ† is highlighted by pink shading. Red dashed lines cross the
axis at points η̄† −

√
σ2†

η[0,1] and η̄† +
√

σ2†
η[0,1].

2.5. Solid Approximation Error Management

The very nature of every approximation is that some kinds of errors are inevitably
introduced into calculations. Its estimation is crucial for management of the reliability
of results. In the following text it will be shown that solid approximation ψ†, φ†, Ψ†, Φ†

accuracy is far beyond any practical needs, and that the benefit-error ratio is high enough
to favour it against ψ, φ, Ψ, Φ. However, prior to making this step, it would be useful to
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propose a framework of auxiliary terms and functions in order to keep following theorems
and proof formulae as simple as possible.

Definition 12. Let us consider parameters p, q, r, w to be restricted by relations p, q, w > 0 and

0 < r ≤ 1. Let number u
de f
= min{p, q} be the smaller of the two values p, q. Let α

de f
= e−q2(1+w2)

and β
de f
= [1− erf(q)erf(u)] be two main error scaling factors. Functions φ†, Φ† are taken from

Definition 11. Then

• the absolute PDF error δ† : R→ R+ is defined by equation:

δ†(t) =
α

π

w
1 + w2t2 + βφ†(t); (55)

• the absolute CDF error ∆† : R→ R+ is defined by equation:

∆†(t) = α

[
1
2
+

arctan(wt)
π

]
+ βΦ†(t); (56)

• the absolute mean error ε†
η̄ ∈ R+ is a constant defined by equation:

ε†
η̄ = α

2 +
ln
(

1 + w2

r2

)
2π w

r

+ 3β; (57)

• the absolute variance error ε†
η̄ ∈ R+ is a constant defined by equation:

ε†
σ2

η
= α

16 +
(1− r2

w2 ) arctan(w
r ) +

r
w

(
1 + 3 ln(1 + w2

r2 )
)

π

+ 23β. (58)

Keep in mind that terms α = e−q2(1+w2) and β = 1− erf(q)erf(u) are extremely small
numbers for all reasonable values of parameters p, q, w. The absolute difference of knot
efficiency statistical properties and its solid approximation partners depends mostly on
some linear combination of α and β. This makes solid approximation so accurate and
worthy of attention.

Theorem 6. Let δ† and ∆† be absolute PDF and CDF error proposed by Definition 12. Then

• absolute difference of PDF functions is bounded for any ∀η, µ ∈ R:

|ψ(η)− ψ†(η)| ≤ 1
r

δ†(η/r) , |φ(µ)− φ†(µ)| ≤ δ†(µ); (59)

• absolute difference of CDF functions is bounded for any ∀η, µ ∈ R:

|Ψ(η)−Ψ†(η)| = |Φ(µ)−Φ†(µ)| ≤ ∆†(µ) ≤ α + β. (60)

Before we proceed to the proof, it is important to stress that both δ†(µ) and ∆†(µ)
converges rapidly to zero with increasing parameter q. For example, if p = 4 and q = 8
(hence w = 0.5) then ∆†(∞) = α + β = 1.81 · 10−35 + 1.54 · 10−8 ≈ 1.54 · 10−8. This means
that there is practically no observable difference between relative knot efficiency CDF Φ(µ),
and its solid approximation Φ†(µ) for ∀~v ∈ Ξ.

Proof of Theorem 6. Proof requires less algebraic manipulations when carried out for φ
branch of Theorem 6. The ψ branch would be proven similarly. According to
Definitions 8 and 11, function φ(µ) can be divided into terms containing φ†(µ) and the
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rest: φ(µ) = 1
π

we−q2(1+w2)

1+w2µ2 + φ†(µ)erf[s(µ)]erf[q]. Then the difference |φ(µ)− φ†(µ)| can be

rewritten in terms: |φ(µ)− φ†(µ)| =
∣∣∣∣ 1

π
we−q2(1+w2)

1+w2µ2 + φ†(µ)(erf[s(µ)]erf[q]− 1)
∣∣∣∣. Using the

triangle inequality [34], previous expression can be upperbounded:

|φ(µ)− φ†(µ)| ≤ 1
π

we−q2(1+w2)

1 + w2µ2 + φ†(µ)|erf[s(µ)]erf[q]− 1|. (61)

Assuming min{p, q} ≤ s(µ) and erf(t) is nondecreasing function we can go further and set
upper bound even higher:

|φ(µ)− φ†(µ)| ≤ 1
π

we−q2(1+w2)

1 + w2µ2 + φ†(µ)(1− erf[u]erf[q]) = δ†(µ). (62)

Based upon the same definitions formula for absolute difference of CDFs can be writ-
ten: |Φ(µ)−Φ†(µ)| =

∣∣∣∫ µ
−∞ φ(t)dt−

∫ µ
−∞ φ†(t)dt

∣∣∣ = ∫ µ
−∞

∣∣φ(t)− φ†(t)
∣∣dt ≤

∫ µ
−∞ δ†(t)dt.

It is easy to prove that
∫ µ
−∞

α
π

w
1+w2t2 dt = α

[
1
2 + arctan(wµ)

π

]
and

∫ µ
−∞ φ†(t)dt = Φ†(µ) by

definition. Hence |Φ(µ)−Φ†(µ)| ≤ ∆†(µ).
Assuming that both arctan(wµ) and Φ†(µ) are non-decreasing functions, we can go

further and make the upper bound simpler yet even higher:

|Φ(µ)−Φ†(µ)| ≤ ∆†(µ) ≤ lim
µ→∞

∆†(µ) = e−q2(1+w2) + [1− erf(q)erf(u)] = α + β. (63)

Theorem 7. Let η̄[0,1] be the expected value of knot efficiency on interval η ∈ [0, 1] (see Definition 9)
and η̄†

[0,1] is the solid approximation of the same quantity (see Equation (53)). Let ε†
η̄ be the absolute

mean error from Definition 12. Finally, let vector (p, q, r) point to sector Ξ ⊂ Π. Then, the absolute
difference of both means is guaranteed to be lower than:

∣∣∣η̄[0,1] − η̄†
[0,1]

∣∣∣ ≤ ε†
η̄

Ψ(1)−Ψ(0)
≈ ε†

η̄ . (64)

Proof of Theorem 7. Absolute difference of both means can be rewritten in terms of ψ(µ):

∣∣∣η̄[0,1] − η̄†
[0,1]

∣∣∣ = ∣∣∣∣∣
∫ 1

0 ηψ(η)dη

Ψ(1)−Ψ(0)
−
∫ 1

0 ηψ†(η)dη

Ψ†(1)−Ψ†(0)

∣∣∣∣∣ =
∫ 1

0
η

∣∣∣∣ψ(η)A
− ψ†(η)

B

∣∣∣∣dη. (65)

For the sake of simplicity new symbols A = Ψ(1)− Ψ(0) and B = Ψ†(1)− Ψ†(0) have
been introduced. Integrand can be rearranged and bounded using the triangle inequality:∣∣∣ ψ

A −
ψ†

B

∣∣∣ = ∣∣∣ 1
A (ψ− ψ†) +

(
1
A −

1
B

)
ψ†
∣∣∣ ≤ 1

A |ψ−ψ†|+
∣∣∣ 1

A −
1
B

∣∣∣ψ† ≤ 1
Ar δ†(η/r)+ |B−A|

AB ψ†.
Hence, the integral problem has been changed in following manner:∣∣∣η̄[0,1] − η̄†

[0,1]

∣∣∣ ≤ 1
A

(∫ 1

0

η

r
δ†(η/r)dη + |B− A|

∫ 1

0
η

ψ†(η)

B
dη

)
. (66)

The remaining absolute value |B − A| = |A − B| can be rewritten using triangle
inequality: |A− B| = |Ψ(1)−Ψ(0)−Ψ†(1)−Ψ†(0)| ≤ |Ψ(1)−Ψ†(1)|︸ ︷︷ ︸

∆†(1)

+ |Ψ(0)−Ψ†(0)|︸ ︷︷ ︸
∆†(0)

.

Now, relation ∆† ≤ α + β from Theorem 6 will be used to simplify the expression and set
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an upper bound: |A− B| ≤ ∆†(1) + ∆†(0) ≤ α + β + α + β = 2(α + β). Hence the second
integral upper limit is:

|B− A|
∫ 1

0
η

ψ†(η)

B
dη ≤ 2(α + β)η̄†

[0,1]. (67)

The remaining unsolved integral can be rewritten using Definition 12:

∫ 1

0

η

r
δ†(η/r)dη =

α

π

∫ 1

0

η

r
w

1 + w2 η2

r2

dη

︸ ︷︷ ︸
1
2

ln(1+w2/r2)
w/r

+βB
∫ 1

0
η

ψ†(η)

B
dη︸ ︷︷ ︸

η̄†
[0,1]

. (68)

Sum all the terms together and get:∣∣∣η̄[0,1] − η̄†
[0,1]

∣∣∣ ≤ 1
A

(
α

2π

ln(1 + w2/r2)

w/r
+ [2α + 2β + Bβ]η̄†

[0,1]

)
. (69)

Now we can finish the proof assuming B ≤ 1 and η̄†
[0,1] ≤ 1:

∣∣∣η̄[0,1] − η̄†
[0,1]

∣∣∣ ≤ 1
A

(
α

2π

ln(1 + w2/r2)

w/r
+ 2α + 3β

)
=

ε†
η̄

Ψ(1)−Ψ(0)
. (70)

Theorem 8. Let σ2
η[0,1] be the knot efficiency variance on interval η ∈ [0, 1] (see Definition 9) and

σ2†
η[0,1] be the solid approximation of the same quantity (see Equation (54)). Let ε†

σ2
η

be the absolute

variance error from Definition 12 and let vector (p, q, r) point to sector Ξ ⊂ Π. Then absolute
difference of both variances is guaranteed to be lower than:

∣∣∣σ2
η[0,1] − σ2†

η[0,1]

∣∣∣ ≤ ε†
σ2

η

Ψ(1)−Ψ(0)
≈ ε†

σ2
η
. (71)

Proof of the Theorem 8 follows the same logical strategy as the Proof of Theorem 7.
However, at the same time, it is a very complex chain of algebraic manipulations, basic
calculus, and triangular inequality application. It may be disruptive to the flow of the main
text, so the proof has been left to the reader.

Finally, it should be acknowledged that there are certainly many another approximations
to the knot efficiency distribution. For example, the normal approximation is among the most
common. This kind of approximation was already studied in papers [10,24,32,35–37]. It is
described by normal distribution ψ(η) ≈ ψ̂(η) ∼ N (η̂, σ̂2), where η̂ = x̄

ȳ and σ̂2 =

x̄2

ȳ2

(
σ2

x̄2 + ς2

ȳ2

)
= r2

2

(
1
p2 +

1
q2

)
. It is quite comfortable and user-friendly to work with ψ̂ as

it is symmetric and Riemann-integrable. It has finite mean and variance. Mode, median,
and mean are the same number, and tolerance intervals can be simply evaluated. However,
normal approximation is a much too radical simplification to describe knot efficiency in
general. Perfectly bell-shaped normal distribution fits the knot efficiency PDF satisfactorily
only within specified interval centered at η̂ (for more details see [37]) and it is not sufficiently
accurate for arbitrary (p, q, r) ∈ Ξ.

3. Discussion

In order to make the presented results more comprehensible, some illustrative exam-
ples are calculated and discussed. The figure eight loop is one of the most widely used
single-loop knots so it is not surprising that it has been chosen as a representative example.
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The only difference between the two examples is the degree of rope damage due to its
professional mission.

3.1. Figure Eight Loop Knot, Geometry O, Old Worn Rope

Let us suppose that the normal distribution model fits the breaking strength of knotted
rope X ∼ N (x̄, σ2) as well as straight rope Y ∼ N (ȳ, ς2). Population means x̄, ȳ and
variances σ2, ς2 are known, and summarised in Table 3, and particular probability density
functions are plotted in Figure 6.

Table 3. Parameters x̄, ȳ, σ, ς.

x̄[kN] ȳ[kN] σ[kN] ς[kN]

21.4975 28.1589 1.12131 2.76045

x y
x,y

1

2

3

ρx ,ρy

Figure 6. Probability density functions of knotted rope breaking strength ρX (yellow) and straight
rope breaking strength ρY (blue).

• Parameters p, q, r, w are calculated according to Definitions 6 and 8:

p =
x̄√
2σ

= 13.56 , q =
ȳ√
2ς

= 7.21 , r =
x̄
ȳ
= 0.76 , w =

p
q
=

x̄ς

ȳσ
= 1.88

• PDF function ψ(η) and CDF function Ψ(η) are way too complicated. Let’s check
whether using solid approximation counterparts ψ†(η), Ψ†(η) would mean a signifi-
cant accuracy issue or not.
For the sake of appropriate accuracy mode selection, parameters α and β have to be
evaluated firstly:

α = e−q2(1+w2) = 3.89 · 10−103 , β = 1− erf(q)erf(u) = 1− erf2(q) = 3.93 · 10−24

According to Theorem 6, the absolute difference between CDF function Ψ(η) and solid
approximation counterpart Ψ†(η) for any ∀η ∈ R is negligible:

|Ψ(η)−Ψ†(η)| ≤ 3.93 · 10−24.

The same goes for absolute difference of truncated mean and variance calculated using
solid approximation:∣∣∣η̄[0,1] − η̄†

[0,1]

∣∣∣ ≤ 1.18 · 10−23 ,
∣∣∣σ2

η[0,1] − σ2†
η[0,1]

∣∣∣ ≤ 9.04 · 10−23.

Therefore, it is reasonable to use a wide spectrum of solid approximation advantages
and keep results highly accurate at the same time.

• Statistical assessment of knot efficiency.

– Probability density function

ψ(η) ≈ ψ†(η) =
1√
π

17.76
erf[7.21]

1 + 4.63η

(1 + 6.06η2)
3
2

e
− 315.32(η−0.76)2

1+6.06η2 ;
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– Cumulative distribution function

Ψ(η) ≈ Ψ†(η) =
1
2

1 +
erf
[

17.76(η−0.76)√
1+6.06η2

]
erf[7.21]

;

– Median

η̃ ≈ η̃† =
x̄
ȳ
= 0.7634 = 76.34%;

– Mode
Solid approximation of knot efficiency PDF is a continuously differentiable func-

tion so the mode can be found by solving two conditions dψ†

dη (η†
m) = 0 and

d2ψ†

dη2 (η†
m) < 0. Numerical methods have been employed.

ηm ≈ η†
m = 0.7493 = 74.93%;

– Truncated mean and variance
Knot efficiency population does not have a finite mean and variance. However, it
is possible to evaluate finite truncated mean and variance restricted to the interval
of physically meaningful knot efficiencies η ∈ [0, 1]. Integrals (53) and (54) have
to be solved by numerical integration.

η̄[0,1] ≈ η̄†
[0,1] = 0.7674 = 76.74% , σ2

η[0,1] ≈ σ2†
η[0,1] = 0.0068 = 0.68%;

– Tolerance intervals
Assumption 5 ≤ q = 7.21 has been met; therefore, solid approximation tolerance
intervals 1σ ≈ 1σ† and 2σ ≈ 2σ† can be evaluated:

[η†
1L, η†

1H ] = [68.53%, 85.64%] , [η†
2L, η†

2H ] = [61.84%, 96.95%].

– PDF graph (see Figure 7.)

0 ηmη2 L η1 L η1 H η2 H 1
η

ψ(η)

Figure 7. PDF of figure eight loop knot efficiency population, tied in geometry O on a worn rope.
Mode, median, and truncated mean are not the same number.

Concluding remarks:

• The most important conclusion is that knot efficiency is certainly not a sharp valued

quantity. Truncated standard deviation is ση[0,1] =
√

σ2
η[0,1] = 8.25%. Tolerance 1σ

interval is 17.11% wide and 2σ range is even 35.11% wide. This is one of the reasons
why it is so important to make as many breaking strength measurements on knotted
and straight rope as possible.
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• Niether tolerance intervals nor knot efficiency PDF are not symmetric, with a heavier
tail on the right side. Any attempts to approximate this by normal distribution would
result in misleading conclusions.

• There is a considerable probability to measure knot efficiency higher than η = 1.
Namely, P(η > 1) = 1− Ψ†(1) = 1.17%. This is not to be confused with truncated
mean knot efficiency, median, or mode, which are well below 1 for any real knot.

• Mode, truncated mean and median are not the same number and it is important to
decide which of these properties suit user purposes the best.

3.2. Figure Eight Loop Knot, Geometry O, New Rope

Let us suppose that the normal distribution model fits the breaking strength of knotted
rope X ∼ N (x̄, σ2) and straight rope Y ∼ N (ȳ, ς2). Population means x̄, ȳ and variances
σ2, ς2 are known and summarised in Table 4, and particular probability density functions
are plotted in Figure 8.

Table 4. Estimated parameters x̄, ȳ, σ, ς.

x̄[kN] ȳ[kN] σ[kN] ς[kN]

19.2063 27.0889 0.50228 0.78148

x y
x,y

1

2

3

4

5

6

ρx ,ρy

Figure 8. Probability density functions of knotted rope breaking strength ρX (yellow) and straight
rope breaking strength ρY (blue).

• Parameters p, q, r, w are calculated according to Definitions 6 and 8:

p =
x̄√
2σ

= 27.04 , q =
ȳ√
2ς

= 24.51 , r =
x̄
ȳ
= 0.71 , w =

p
q
=

x̄ς

ȳσ
= 1.10

• Let us check whether using solid approximation ψ†(η), Ψ†(η) would mean a signif-
icant accuracy issue or not. For the sake of appropriate accuracy, mode selection
parameters α and β have to be evaluated first:

α = e−q2(1+w2) = 3.80 · 10−579 , β = 1− erf(q)erf(u) = 1− erf2(q) = 5.59 · 10−263

According to Theorem 6, the absolute difference between CDF function Ψ(η) and solid
approximation counterpart Ψ†(η) for any ∀η ∈ R is negligible:

|Ψ(η)−Ψ†(η)| ≤ 5.59 · 10−263.

The same goes for absolute difference of truncated mean and variance calculated using
solid approximation:∣∣∣η̄[0,1] − η̄†

[0,1]

∣∣∣ ≤ 1.68 · 10−262 ,
∣∣∣σ2

η[0,1] − σ2†
η[0,1]

∣∣∣ ≤ 1.29 · 10−261.

Therefore, it is reasonable to use a wide spectrum of solid approximation advantages
and keep the results highly accurate at the same time. Moreover, in this particular
case, even normal approximation would be accurate enough for η ∈ [0, 1].
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• Statistical assessment of knot efficiency.

– Probability density function

ψ(η) ≈ ψ†(η) =
1√
π

38.14
erf[24.51]

1 + 1.72η

(1 + 2.42η2)
3
2

e
− 1454.33(η−0.71)2

1+2.42η2 ;

– Cumulative distribution function

Ψ(η) ≈ Ψ†(η) =
1
2

1 +
erf
[

38.14(η−0.71)√
1+2.42η2

]
erf[24.51]

;

– Median

η̃ ≈ η̃† =
x̄
ȳ
= 0.7090 = 70.90%;

– Mode
Solid approximation of knot efficiency PDF is a continuously differentiable func-

tion, the mode is a solution to relations dψ†

dη (η†
m) = 0 and d2ψ†

dη2 (η†
m) < 0.

ηm ≈ η†
m = 0.7078 = 70.78%;

– Truncated mean and variance

η̄[0,1] ≈ η̄†
[0,1] = 0.7096 = 70.96% , σ2

η[0,1] ≈ σ2†
η[0,1] = 0.0007658 = 0.07658%;

– Tolerance intervals
Assumption 5 ≤ q = 24.51 has been met; therefore, solid approximation tolerance
intervals 1σ ≈ 1σ† and 2σ ≈ 2σ† can be evaluated:

[η†
1L, η†

1H ] = [68.20%, 73.72%] , [η†
2L, η†

2H ] = [65.60%, 76.67%].

– PDF graph (see Figure 9.)

0 η
˜

1
η

ψ(η)

Figure 9. PDF of figure eight loop knot efficiency population, tied in geometry O on a new rope.
Mode, median, and truncated mean are effectively indistinguishable.

Concluding remarks:

• The knot efficiency of the same knot tied on the new rope is much better determined
than in the previous example. Truncated standard deviation is approximately four
times lower: ση[0,1] =

√
σ2

η[0,1] = 2.77%. However, it is still not a sharp valued quantity.

• Tolerance 1σ interval is 5.53% wide and 2σ range is 11.07% wide. Tolerance inter-
vals and knot efficiency PDF exhibit a high degree of symmetry. Mode, median,



Symmetry 2022, 14, 1926 24 of 25

and truncated mean are very close to each other. There is high similarity with a
normal distribution;

• Probability to measure knot efficiency from interval η ∈ R− [0, 1] is negligible.
• Normal approximation is much easier to work with and it is recommended to use it if

indicated [37]. In such a case mode, median and mean are considered to be the same
value: η̂m = ˆ̃η = ˆ̄η = r, variance is given by simple explicit equation: σ̂2 = r2

2

(
1
p2 +

1
q2

)
.

Note that the truncated solid approximation variance σ2†
η[0,1] and normal approximation

variance σ̂2 agree up to 5 decimal places in this particular example.

4. Conclusions

Knot efficiency is a directly immeasurable quantity and the only possibility to obtain
this value is calculation by definition η = X

Y . The vast majority of published results (maybe
even all of them) suffer from misunderstanding the statistical nature of knot efficiency as
well as incorrect statistical assessment. The main goal of presented paper was to fix this
issue. Instead of identifying the knot efficiency with some number, it has to be treated
as a random variable with noticeable dispersion, given by a probability density function
ψ(η) and cumulative distribution function Ψ(η). PDF and CDF of knot efficiency have
been derived, and all the standard properties of knot efficiency (mean, variance, median,
mode, tolerance intervals) have been examined. In addition, a less complex version of
knot efficiency (so called solid approximation) has been proposed, and error management
was investigated.
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MŠVVaŠ SR) grant number 027ŽU-4/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work would not have been possible without the material and technical sup-
port of the ropemaker company Gilmonte, Slovak mountain rescue service (HZS) and the University
of Žilina.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

PDF Probability density function;
CDF Cumulative distribution function;
E(X) Expected value of the random variable X;
Var(X) Variance of the random variable X;
N (µ, σ2) Normal distribution given by the mean µ and the variance σ2;
erf(x) Error function: erf(x) = 2√

π

∫ x
0 e−t2

dt.
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